
59

Push the Limit of Millimeter-wave Radar Localization
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Existing device-free localization systems have achieved centimeter-level accuracy and show their potential
in a wide range of applications. However, today’s radio-based solutions fail to locate the target in millimeter-
level due to their limited bandwidth and sampling rate, which constrains their applications in high-accuracy
demand scenarios. We find an opportunity to break the bottleneck of existing radio-based localization sys-
tems by reconstructing the accurate signal spectral peak from the discrete samples, without changing either
the bandwidth or the sampling rate of the radio hardware. This study proposes milliLoc, a millimeter-level
radio-based localization system. We first derive a spectral peak reconstruction algorithm to reduce the rang-
ing error from the previous centimeter-level to millimeter-level. Then, we improve the AoA measurement
accuracy by leveraging the signal amplitude information. To ensure the practicality of milliLoc, we further
extend our system to handle multi-target situations. We fully implement milliLoc on a commercial mmWave
radar. Experiments show that milliLoc achieves a median ranging accuracy of 5.5 mm and decreases the AoA
measurement error by 31.2% compared with the baseline. Our system fulfills the accuracy requirements of
most application scenarios and can be easily integrated with other existing solutions, shedding light on high-
accuracy location-based applications.
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1 INTRODUCTION

Acquiring accurate location of a target is a fundamental component required by a wide range
of real-world applications, such as security monitoring, virtual reality, smart homes, and asset
management. For this wide range of applications, localization accuracy is a key factor that decides
how prevalent the applications can be deployed and utilized. For example, being capable of tracking
fingers means that we can control the channel and volume of television with our bare hands. To
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accurately use finger movements to control smart homes, we need millimeter-level localization
accuracy.

In addition, some industrial applications also require high-resolution localization, including me-
chanical arms, conveyor belts, subway train control systems, and tunnel boring machine (TBM)

systems. As an example, the thrust cylinders on TBM require millimeter-level accuracy to ensure
precise tunnel excavation. Traditional mechanical sensors are cumbersome to deploy and prone to
mechanical failures such as chain jamming, which can cause data jitter. The subway train control
system also requires millimeter-level accuracy to exactly align the position of the screen door on
the platform so passengers can get on and off the train normally.

Over the past decades, pioneer efforts have been devoted to accurate target localization and
tracking. However, some of them require the target to carry dedicated devices, such as RFID
tags [34, 45], mobile phones [17, 21, 31, 39, 49], and wearable devices [11, 12], which poses incon-
venience and even infeasibility under specific scenarios. As such, device-free localization, which is
also called passive localization, attracts increasing research interest, as it does not need any device
attached to the target. Mainstream researches focus on utilizing cameras, Wi-Fi, or sound signal for
localization. Among all existing device-free localization techniques, camera-based solutions [9, 48]
have limitations of adequate illumination and raise serious privacy concerns. Wi-Fi-based solu-
tions [20, 25, 41, 42] are promising, thanks to the unique advantages of Wi-Fi in its ubiquitous
deployment. However, suffering from their limited meter-level accuracy, these solutions are in-
sufficient to support high-accuracy location-based services. Sound-based systems [36, 46] usually
have a small coverage area and deteriorate under noise surroundings due to lower input SNR.

Compared with the aforementioned solutions, millimeter-wave (mmWave) devices offer a
higher resolution. By taking advantage of the unique reflected target features and advanced
denoising methods, existing mmWave-based localization systems, such as mmTrack [40] and
WiTrack2.0 [5] have made a promising step towards decimeter-level location accuracy. However,
their localization accuracy is still affected by limited bandwidth and can not be further improved.
mmVib [13] and Osprey [24] can achieve millimeter-level and even sub-millimeter-level sensing,
but they pay more attention to the displacements of targets during movements, rather than the
absolute range.

More importantly, the accuracy of the absolute range is still limited by signal bandwidth and sam-
pling rate.1 We extract the signal frequencies to acquire the absolute range by Discrete Fourier

Transform (DFT), and the sampling error has a significant negative impact on distance measure-
ment. As shown in Figure 1, the real frequency of the signal is f0, but due to frequency sampling,
we consider the signal frequency is f

′
0 , which causes frequency error δ . Consequently, there is an

“ambiguity area” in the frequency calculation, and the frequencies in the “ambiguity area” will be
regarded as the same frequency f

′
0 . As introduced in Section 2, the “ambiguity width,” which is

frequency resolution Δf , is related to the observation time. Applied to the range measurements in
wireless signal, the “ambiguity” in frequency spectrum results in the “ambiguity” of range. As il-
lustrated in Figure 1, there are range bins for the range measurements in the wireless field. Targets
located anywhere in a range bin will get the same range result, which leads to the “ambiguity” of
range measurements. Even though some of existing works are able to achieve higher granularity
sensing, including mmVib [13] and Osprey [24], they use phase information to detect the motion
of targets and do not contribute much to the measurement of the absolute range of the target. In
addition, the frequency error causes the “ambiguity” of Angle-of-Arrival (AoA) measurements.

1According to the signal processing principle in Section 2, the resolution of the RF signal is inversely proportional to
its bandwidth. Take the commonly used mmWave radar with 4 GHz bandwidth as an example: The range resolution is
generally considered to be about 4 cm.
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Fig. 1. The example of sampling error in the frequency spectrum. frequency error δ leads to the “ambigu-
ity” of range measurement, and there is also a deviation between the phase of the real peak point and the
sampling peak point.

According to Section 3.4, AoA is calculated by the phase of the peak point in the frequency spec-
trum. Owing to the frequency error, there is a deviation between the phase of the real peak point
and the sampling peak point, which brings about the deviation of AoA calculation.

To break the bottleneck inherent from the signal processing theory itself, one feasible solution
is to dig into the working mechanism of hardware and signal processing theory, then propose
a “super-resolution” algorithm that can improve the frequency estimation accuracy. Many super-
resolution works have been designed, including MUSIC [30], ESPRIT [29], and their extended
techniques Ubicarse [18], D-MUSIC [26], and GPR [23]. They mostly focus on “super spatial reso-
lution,” which makes multi-path signals distinguishable. However, they pay more attention to the
high-level algorithms and ignore low-level problems of frequency calculation. By contrast, our
work pays more attention to “super frequency resolution,” which makes the localization results
more accurate. To achieve this promising solution, we address three significant challenges that
require non-trivial efforts.

• Limited range resolution. As illustrated in Figure 1, there is “ambiguity” in the range
estimation. Based on the time-frequency analysis theory, the spatial resolution of the RF
signal is inversely proportional to its bandwidth. Due to the radio hardware implementation,
improving the range resolution by simply increasing the signal bandwidth is unrealistic. The
current range resolution can not meet the needs of millimeter-level localization.
• Limited angular resolution. To locate the target in a 2D polar coordinate system accu-

rately, both the radial distance and the angle need to be precise enough. The traditional AoA
calculation algorithm is based on the phase difference between multiple antennas. According
to the mentioned above, frequency error during sampling inevitably suffers from the phase
noise. The inaccurate AoA resolution limits the localization capability of millimeter waves
in the 2-D plane.
• Multi-target localization. Multiple targets may appear in the monitoring area simultane-

ously, and their reflected signals would be superposed together. Therefore, it is challenging
to identify each target’s reflected signal.

To tackle the above challenges, we propose milliLoc, a millimeter-level multi-target localization
system based on a commercial-off-the-shelf (COTS) mmWave device. In milliLoc, to improve
the range accuracy, we analyze the process of the Fourier transform and then derive the spectral

peak reconstruction algorithm, which successfully reduces the ranging error from centimeter level
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to millimeter level by solving an optimization problem. On this basis, we innovatively leverage the
signal amplitude information from the equations mentioned above to improve the AoA accuracy of
milliLoc. To realize multi-target localization, we further extend milliLoc to separate the superposed
spectrum caused by the reflections from multiple objects.

We have fully implemented milliLoc on commercial mmWave device IWR1443BOOST [4] with
transmitted signal frequency ranges from 77 GHz to 81 GHz. Experiments show milliLoc could
achieve a median ranging accuracy of 5.5 mm, which outperforms the conventional “peak-pt”
scheme [1] by more than 50%. For the AoA measurement, milliLoc achieves a median accuracy
of 6.6°, which precedes the traditional method with a decrease of error by 31.2%. In view of the
universality of frequency calculation and sampling errors presented in most cases, we believe that
our method could be applied to not only mmWave radar, but also other RF-signal-based sensing
systems, including Wi-Fi signal, sound signal, and lidar. Our technique is able to boost the sensing
accuracy of various RF signals, which could expand their applications.

In summary, our core contributions are as follows:

• We propose milliLoc, a millimeter-level multi-target localization system based on COTS
mmWave device. As underlying technical support, our solutions can be integrated with other
wireless sensing systems to achieve better performance.
• We push the limit of the mmWave radar’s ranging accuracy to millimeter-level by deriving a

novel spectral peak reconstruction algorithm based on our in-depth understanding of Fourier
transform theory. Then, we reduce the systemic error in AoA measurement and improve
the angular accuracy by innovatively leveraging the amplitude information of the received
signal.
• We fully implement milliLoc on a COTS mmWave device and evaluate it in three different

scenarios. Experiment results demonstrate that milliLoc achieves millimeter-level ranging
accuracy and decreases the AoA measure error by 31.2%. Apart from these, our system could
locate multiple targets concurrently.

The rest of the article is organized as follows: Section 2 demonstrates the FMCW signal and
range resolution. Section 3 gives the system design. Experiments and evaluations are provided
in Section 4. Section 5 proposes the discussion. Section 6 gives the related work followed by a
conclusion in Section 7.

2 PRELIMINARY

In our work, we use a COTS mmWave device IWR1443BOOST [4] provided by TI company.
As shown in Figure 2, the transmitted signals are Frequency Modulated Continuous Wave

(FMCW) chirps, which could be formulated [1, 7] as:

ST x (t ) = cos

(
2π f0t +

πB

Tc
t2

)
, (1)

where f0 is start frequency,B is the chirp bandwidth, andTc is the chirp duration. From Equation (1),
the frequency of the chirp is f0 +

B
Tc
t , which increases linearly along time.

The chirp signal would be reflected by targets and captured by receive antennas. The received
signal could be viewed as a delayed version of transmitted chirp, which could be denoted as:

SRx (t ) = αST x

(
t − 2d

c

)
, (2)

where α is the signal attenuation, d is the distance between mmWave device and target, and c
represents the propagation velocity of electromagnetic wave.
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Fig. 2. The example of FMCW chirp signals.

The time delay of reflection signals could be calculated by the frequency differences between
the transmitted and received signals, which can demonstrate the range information. A mixer is
used to obtain the intermediate frequency (IF) signal. The IF signal could be illustrated as:

SI F (t ) = α̂ cos

(
4πBd

cTc
t + φ0

)
, (3)

where φ0 is the initial phase. From Equation (3), we know that the frequency of IF signal SI F (t ) is
proportional to the distance between the mmWave device and the target.

To get the distance of the target, we need to extract the frequency of the IF signal. The most
common way to extract frequency is to apply DFT to the IF signal. Each peak point in the spectrum
represents a frequency component, which is caused by a reflection signal. The frequency resolution
of DFT is Δf = 1

Tc
, where Tc is the observation time [1, 33]. Since Δf = 2BΔd

cTc
, the resolution of

range could be calculated by:

Δd =
c

2B
. (4)

It shows that the range resolution is inversely proportional to the bandwidth.
IWR1443 works on the frequency range from 77 GHz to 81 GHz and the maximum bandwidth

is 4 GHz. However, the available bandwidth is slightly less than 4 GHz due to bandwidth loss in
practice. Consequently, the range resolution of the method is around 4 cm. It means that if a target
locates anywhere in the range bin with 4 cm, then the mmWave device would give the same range
results, which means the “ambiguity” in range estimation.

3 SYSTEM DESIGN

3.1 System Overview

As introduced in Section 2, we could use the peak point in the IF frequency spectrum to estimate
the frequency. However, the frequency resolution is limited by signal observation window size,
which restricts the range resolution in the target localization of FMCW radar.

For example, there are two discrete sine signals as shown in Figure 3: s1[n] = A1e
jθ1e j2π f1n and

s2[n] = A2e
jθ2e j2π f2n , where A1e

jθ1 and A2e
jθ2 are amplitudes; f1 =

kp−δ

N
and f2 =

kp+δ

N
, which

are normalized frequencies defined in [0, 1]; N is the sample number and δ is a real number in
[− 1

2 ,
1
2 ]. Although the frequencies of s1 and s2 are not exactly equal, they have the same bin index

with maximal amplitude in the DFT spectrum at kp due to sampling error of DFT. In other words,
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Fig. 3. Examples of DFT frequency resolution.

Fig. 4. System overview of milliLoc.

s1 and s2 both lie in the same “ambiguity area.” We would determine that s1 and s2 have the same
frequency and ignore their slight distinctions by the mentioned method above.

Nevertheless, the DFT amplitude distributions of s1 and s2 are not identical. For instance, their
spectrum amplitudes of bin kp − 1, kp and kp + 1 are varied, even though they have the same bin
index with maximal amplitude. If we make full use of the information of DFT results rather than
only choosing a peak point, then we might get more accurate frequency information. Applying to
target ranging based on FMCW mmWave radar, we are capable of obtaining higher range accuracy.
We will establish the quantitative analysis model, consider the noises under the actual situation,
and propose our method based on the above idea.

Figure 4 illustrates milliLoc’s overall architecture. We preprocess the raw FMCW data as in-
troduced in Section 2 and then obtain the range spectrum. During target ranging, reflections
from other static objects may be received by mmWave device, which would interfere with target

ACM Transactions on Sensor Networks, Vol. 19, No. 3, Article 59. Publication date: April 2023.
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detection and ranging. To reduce the influence of static objects, we collect data in the experimental
environment in advance and analyze the distribution of static objects to reduce their impact on
target ranging [37].

After static objects detection, we could calculate the number of targets based on the existing
work [1, 38]. In view of the single-target and multi-target situations, we propose the single target
ranging scheme and multiple targets ranging scheme, which would be elaborated in Sections 3.2
and 3.3, respectively. We give a spectral peak reconstruction algorithm, which models the output
signal of mmWave radar and derives the accurate range by solving an optimization problem. For
multiple targets, we extend milliLoc to separate the superposed spectrum caused by the reflections
from multiple objects. By the amplitude information acquired in equations, we improve the AoA
accuracy and achieve 2D localization, which is provided in Section 3.4.

3.2 Single Target Ranging

For ease of understanding, we first consider the most basic scenario with only one target. We
propose a spectral peak reconstruction algorithm to acquire the accurate frequency. Based on the
previous analysis, one target means the reflected Rx signal contains only one frequency component.
Then, we will give the theoretical model with only one frequency component.

A single-frequency complex discrete signal under white Gaussian noise could be modeled as
follows:

r [n] = A0e
jθ0e j2π f n +w[n],n = 0, 1, . . . ,N − 1, (5)

where A0e
jθ0 is the unknown complex-valued amplitude, A0 and θ0 both are real numbers, f =

kp+δ

N
is the normalized frequency defined in [0, 1], δ is a real number in [− 1

2 ,
1
2 ], N is the sample

number, and w[n] is white Gaussian noise. Our goal is to estimate δ in the DFT spectrum to get a
more accurate signal frequency.

DFT of r [n] could be calculated by [33]:

R[k] =
N−1∑
n=0

r [n]e−j 2π
N nk ,k = 0, 1, . . . ,N − 1. (6)

Generally, the signal-to-noise ratio (SNR) is sufficiently large, and we could presume that kp

corresponds to the bin index with maximal amplitude in the DFT spectrum. Consequently, there
are three unknown real parameters in the signal: A0, θ0, and δ .

From Equations (5) and (6), we could give the DFT results as follows:

R[kp −m] = A0e
jθ0 1−e j2π (δ+m )

1−e
j 2π

N
(δ+m )

+W [kp −m],

m = kp − N + 1,kp − N + 2, . . . ,kp ,
(7)

whereW [kp −m] is the DFT of w[n].
Considering that DFT results R[k] are complex values, the real part and imaginary part of Equa-

tion (7) are equal, respectively. In other words, Equation (7) could be decomposed into two equa-
tions of real numbers:

Real{R[kp −m]} = Real
{
A0e

jθ0 1−e j2π (δ+m )

1−e
j 2π

N
(δ+m )

+W [kp −m]
}
,

Imag{R[kp −m]} = Imag
{
A0e

jθ0 1−e j2π (δ+m )

1−e
j 2π

N
(δ+m )

+W [kp −m]
}
,

m = kp − N + 1,kp − N + 2, . . . ,kp .

(8)

Equation (8) shows that each DFT sample could provide two real equations.
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Fig. 5. Single-frequency signal estimation error of frequency derivation δ with respect to SNR.

In our problem, at least two DFT samples are needed to solve a system of nonlinear equations
for three unknown real parameters. Theoretically, the solution would be more precise if more DFT
samples are used. The process of solving the system of nonlinear equations is equivalent to solving
the following optimization problem:

min
(A0,θ0,δ )

〈
R[k] −A0e

jθ0
1 − e j2π (δ+kp−k )

1 − e j 2π
N (δ+kp−k )

〉
,k = K1,K2, . . . ,KN , (9)

where K1,K2, . . . ,KN are DFT samples involved in the solution, and 〈•〉 represents the real part or
imaginary part. However, some DFT samples with lower magnitude would have larger errors due
to interference of noise. To reduce the influence of noise, we apply amplitude modulation to the
optimization problem. In detail, we use the amplitude of samples to adjust the coefficients of the
optimization problem. Thus, samples with lower amplitude make less contribution to the solution
of the optimization problem, which would relieve the disturbance of noise. Consequently, we solve
the optimization problem as follows:

min
(A0,θ0,δ )

|R[k]|
〈
R[k] −A0e

jθ0
1 − e j2π (δ+kp−k )

1 − e j 2π
N (δ+kp−k )

〉
,k = K1,K2, . . . ,KN . (10)

Therefore, we select the DFT samples with higher amplitude and solve the optimization problem by
Levenberg–Marquardt algorithm, a common method for the solution of certain nonlinear problems
in least squares [19, 22]. Consequently, we obtain the complex-valued amplitude A0e

jθ0 and more

accurate frequency
kp+δ

N
. Then, we could calculate the target range refer to:

d =
kp + δ

N

cFsTc

2B
, (11)

where Fs is the sample rate of mmWave device.
The method is evaluated through simulation. We preset a single-frequency signal and add white

Gaussian noise with different power according to SNR. Then, we estimate frequency derivation δ
by the above-mentioned method. Figure 5 shows the estimation error with respect to various SNR.
The estimation error of δ declines gradually with the increase of SNR. Even with an SNR of 10
dB, we achieve a median error of 0.01 in δ . As presented in Section 2, the normalized frequency
estimation error of 1 represents the localization error of 4 cm. Consequently, our method is able
to achieve a median localization error of 0.4 mm with the SNR of 10 dB under ideal conditions.

We analyze the process of Fourier transform and give the spectral peak reconstruction algorithm,
which builds and solves an optimization problem to obtain the accurate frequency. Simulation
results show that our approach is able to acquire more fine-grained frequency estimation results.

During the movement of the target, secondary reflections from the target might disturb normal
localization. In addition, sometimes the targets produce strong specular reflections (similar to a
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mirror) to the incident mmWave signal, and reflected signals are not always captured by the re-
ceive antennas, which would deteriorate localization accuracy [6, 8]. We can use the continuity of
distance over adjacent frames to reduce the impact of various external disturbances [38]. We ana-
lyze the localization of the target during the overall monitoring period, and correct the localization
results with larger deviations according to adjacent frames, which would reduce the influence of
accidental errors and external noise.

Considering that common radar equipment usually has a high SNR, even with more complex
noise rather than white Gaussian noise, we are confident to achieve millimeter-level localization
error.

3.3 Multiple Target Ranging

In practical applications, however, multiple targets may appear at the same time, which may cause
performance degradation and further constrain the application scenarios of cargo spotting de-
vices where multiple targets need to be located. To tackle this complex situation, we innovatively
derive a multi-frequency signal algorithm. For ease of understanding, here, we consider a double-
frequency signal as an example.

A double-frequency complex discrete signal under white Gaussian noise could be written as
follows:

t[n] = A1e
jθ1e j2π f1n +A2e

jθ2e j2π f2n +w[n],n = 0, 1, . . . ,N − 1, (12)

where A1e
jθ1 ,A2e

jθ2 are unknown complex-valued amplitudes, f1 =
kp1+δ1

N
, f2 =

kp2+δ2

N
are nor-

malized frequencies, N is the sample number, and w[n] is white Gaussian noise.
As presented in Section 3.2, we could calculate the DFT spectrum T [k],k = 0, 1, . . . ,N − 1 by

Equation (6) and read the value of kp1,kp2. Now, we have six unknown real parameters in the
double-frequency signal, including A1,A2,θ1,θ2,δ1,δ2.

In the single-frequency signal, we use at least two samples with higher magnitude in the DFT
spectrum to solve unknown parameters. In the double-frequency signal, we consider two different
situations:

• If |kp1−kp2 | > 3, which there is a large difference between the frequencies f1 and f2, then we
solve the parameters of each frequency component separately. Here, the mutual influence
between two frequency components is slight.
• If |kp1 − kp2 | ≤ 3, then the peaks of two frequency components in the DFT spectrum would

be jumbled together. It will bring larger error to calculate the parameters of each frequency
component separately, as introduced in Section 3.2. Consequently, We solve the whole un-
known parameters in one optimization problem. Considering that there are six unknown
real parameters, we need at least six real equations, i.e., three DFT sampling point informa-
tion to form a system of nonlinear equations to establish the optimization problem. Because
there are two components, which peak points in the frequency spectrum locate at kp1 and
kp2. We need to distinguish the magnitude of kp1 and kp2 to make it clear that “we use the
DFT spectrum results from ‘T [kp1−1] toT [kp2+1]’ or ‘T [kp2−1] toT [kp1+1]”. Consequently,
we suppose that kp1 ≤ kp2 to determine an explicit DFT spectrum result range.

If more frequency components exist in the signal, then we solve the parameters by the above
mentioned method. If the components do not have closer frequencies, then we solve each fre-
quency component, respectively. If the components have closer frequencies, then we solve them
by a unified optimization problem. To settle a system of equations with u frequency components,
i.e., 3u unknown parameters synchronously, we need 3u equations and � 3

2u� DFT samples.
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Fig. 6. Double-frequency signal estimation error of
frequency derivation δ with respect to SNR when
there is a large difference between the frequencies
of two components.

Fig. 7. Double-frequency signal estimation error of
frequency derivation δ with respect to various fre-
quency difference for SNR = 20dB when the fre-
quencies of two components are similar.

We preset a signal with two frequency components as well as white Gaussian noise. When the
two bin indexes with maximal amplitude are larger than 3, which means the distance between two
targets surpasses 12 cm, we calculate each frequency component separately, and Figure 6 shows
the simulation performance. When SNR surpasses 20 dB, the error of δ exceeds which in a single-
frequency situation. It is because the white Gaussian noise is lower and a frequency component
would interfere with another frequency component. However, white Gaussian noise dominates
the whole interference when SNR < 20 dB, which accounts for almost the same estimation perfor-
mance between single or double frequency components. Overall, the error of frequency estimation
results remains at low levels, which shows the effectiveness of our system.

When the two bin indexes with maximal amplitude are smaller than 3, which means the dis-
tance of two targets does not exceed 12 cm, we need to calculate two frequency components in
one optimization problem. We evaluate the error of δ with respect to the normalized frequency
difference between two frequency components and the SNR is fixed to a specific value, which is
20 dB. As shown in Figure 7, our algorithm resolves two frequency components successfully when
the normalized frequency difference is larger than 1. When two frequencies get too close to each
other, our method could not distinguish different components and generate a large estimation bias.
This is because there are few samples with higher amplitude, and samples with lower amplitude
are vulnerable to system noises, which leads to less accurate estimation results.

We select different optimization problems to solve multiple-target localization according to their
location relationship. Simulation results show that our method is capable of separating different
frequency components.

3.4 2D Extension

Although milliLoc has achieved mm-level ranging accuracy, in most cases, we need to acquire the
target’s 2D localization. To realize an accurate 2D localization, the AoA estimation needs to be
further improved.

milliLoc uses linear Rx antenna array on mmWave radar to calculate AoA. Figure 8 shows a sim-
ple 3-antenna linear array with d0 distance separation. Usually, the distance between target and de-
vice d 	 d0, hence the reflected signals reach the antenna array almost in parallel. From geometri-
cal relationship, the distance difference between adjacent antennas Δd = d0 sinθ , whereθ is AoA of
the receiving signal. The phase difference between adjacent antennas could be represented as [42]:

Φ =
2πd0 sinθ

λ
, (13)

where λ is the wavelength. We could calculate target AoA by Equation (13) in theory.
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Fig. 8. Uniform linear array to calculate AoA.

Fig. 9. The examples that extract the initial phase by DFT. (a) The real part of x1[n], where frequency devia-
tion δ = 0. (b) The DFT result of x1[n]. the phase of peak point is equal to the initial phase of x1[n]. (c) The
real part of x2[n], where frequency deviation δ � 0. (d) The DFT result of x2[n]. the phase of peak point is
not equal to the initial phase of x2[n].

Nevertheless, if we use the phase difference of various antennas directly, then random noise
and multiple-target reflections may also exist in the original signal, which would cause a large
calculation error. Fortunately, we are able to extract the initial phase of each chirp in each fre-
quency component by DFT. As introduced in Reference [1], we ignore the frequency deviation δ
and white Gaussian noise w[n] in Equation (5), and according to Equation (7), the phase of DFT
samples could be transformed as:

angle(R[k]) =

{
θ0 k = kp

0 k � kp
,k = 0, 1, . . . ,N − 1 , (14)

where kp is the DFT bin index with peak amplitude, and θ0 is the initial phase of the corresponding
frequency component. So, if frequency deviation δ = 0 or we leave out the effect of δ , then we
could read the initial phase by DFT results with peak point. Figure 9(a) illustrates a typical example

with a sinusoidal signal: x1[n] = e j (2π f1n+ π
3 ) , where frequency deviation δ = 0. We illustrate the

real part of x1. As shown in Figure 9(b), we could extract the initial phase by the peak points of
the DFT result X1.
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Fig. 10. Single-frequency signal estimation error of
amplitude angle with respect to SNR.

Fig. 11. Experiment device.

But in most cases, frequency deviation δ � 0. Referring to Equation (7), the phase of peak point
in the DFT spectrum could be written as follows:

angle(R[kp]) = θ0 + angle(F (δ )), (15)

where F (δ ) = 1−e j2π δ

1−e
j 2π

N
δ

and − 1
2 ≤ δ ≤ 1

2 .

Because angle(F (δ )) � 0 when δ is not an integer, the initial phase that we extract from the
peak point in the DFT spectrum would not accurate. Figure 9(c) is the real part of a sinusoidal
signal: x2[n] = e j (2π f2n+ π

3 ) , where frequency deviation δ � 0. In Figure 9(d), we find that the phase
of peak point in DFT results X2 is not equal to the initial phase of x2.

Now, our goal is to estimate the initial phase θ0 to calculate target AoA, which is derived from
in Section 3.2. Hence, we get the initial phase from the estimated value θ0 directly.

Figure 10 examines the error of initial phase θ0 when we put up a single-frequency signal. We
achieve the median angle error of less than 1° under SNR greater than 20 dB. Our algorithm esti-
mates both the complex amplitude and normalized frequency deviation brilliantly.

Our AoA calculation algorithm is described as follows: For each receive antenna, we could ob-
tain a set of target results. If there exists more than one target, then we match the range over
antennas to obtain the parameter information of each target. Then, for each antenna, we could
calculate phase θ0 as the initial phase of each frequency component and figure out the AoA by
Equation (13). Then, we obtain the location of targets in the 2-D plane by the range and AoA.
To acquire height information, we need a 3-D antenna array. Antennas on the vertical direction
give angular resolution in the vertical direction. Combining with target range, we are able to get
3-D localization. In our experiment, we use one Tx antenna and four Rx antennas on mmWave
chip, which consist of a 2-D antenna array and only have the angular resolution in the horizontal
direction. 3-D localization is left for our future work.

4 EVALUATION

4.1 Experimental Methodology

4.1.1 Implementation. We implement milliLoc on IWR1443BOOST [4] and DCA1000EVM [3]
provided by TI company. As illustrated in Figure 11, IWR1443 integrates seven onboard antennas,
including three Tx antennas (denoted as Tx1∼Tx3) and four Rx antennas (denoted as Rx1∼Rx4).
The mmWave chip is around 1 cm × 1 cm. We utilize Tx1 to send FMCW signals sweeping from
77 GHz to 81 GHz and Rx1∼Rx4 to receive the reflected signals. The chirp duration is set to 60 us
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Fig. 12. Experiment setup in different scenarios.

and the number of samples per chirp is set to 256, corresponding to a maximum detection range
of 10.2 m.

The samples are captured through DCA1000EVM via network cable in a high-speed and real-
time manner. Moreover, we obtain ground truth by a lidar sensor [2]. We compare the 1-D range
estimate results and AoA estimate results of milliLoc with ground truth to analyze the perfor-
mance of our system. To facilitate the comparison of the estimate results with the ground truth and
evaluate the system performance, we set the radio frame rate to 50 Hz, which means that the lo-
calization results are given every 0.02 second.

4.1.2 Evaluation Setup. We conduct experiments under three typical scenarios illustrated in
Figure 12: a large empty classroom, a living room with various furniture, and a narrow corridor.
In the classroom, we select two monitoring areas, and in the other two scenarios, we select one
monitoring area, respectively, to comprehensively evaluate the performance of milliLoc.

Considering that if we take the human as the target, since the contour of the human body is
a curved surface and all parts of the human body may reflect signals, it is not easy to accurately
obtain the ground truth with millimeter-level accuracy. Consequently, we tie different boxes to
a control car and monitor the localization and movements of the toy car under both static and
dynamic conditions to evaluate the system performance.

4.2 System Performance

4.2.1 Single Target Localization Estimation Accuracy. We first compare the single target local-
ization performance of milliLoc with the traditional and common method, “peak-pt” [1] and two
state-of-the-art works, PDA [43] and GPR [23]. “peak-pt” uses the peak point directly to calculate
the localization of the target. PDA calculates the cross-correlation function between the different
sinusoidal kernel functions and the IF signal to estimate the localization. GPR computes the spatial
heatmaps of the received signals based on the classical MUSIC algorithm and develops a Gaussian
process regression model to compensate the systematic biases and detect the target location. We
implement the algorithm of PDA and GPR and compare them with our system under the same
environment and bandwidth.

Figure 13 shows the localization error of four approaches when a single target locates directly
in front of mmWave device (AoA < 5°). milliLoc achieves a median localization accuracy of 5.5 mm,
outperforming “peak-pt,” PDA, and GPR. Compared to milliLoc, the median localization error of
“peak-pt,” PDA, and GPR are 11.1 mm, 10.2 mm, and 11.8 mm, respectively. As introduced in
Section 2, the range resolution about “peak-pt” is around 4 cm. Assuming that the target has an
equal probability of appearing in each location within the range bin, the localization error is a
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Fig. 13. Localization error when a single target
locates directly in front of mmWave device.

Fig. 14. Localization error when a single target
locates diagonally in front of mmWave device.

uniform distribution from 0 to 2 cm. Consequently, the median localization error of “peak-pt” is
theoretically about 1 cm. PDA and GPR capture the range of the target in terms of correlation
function calculation and spatial resolution enhancement, respectively. However, PDA and GPR do
not focus on the range resolution of a single target, thus falling short in improving the localization
performance; while milliLoc makes full use of the IF frequency spectrum based on the spectral
peak reconstruction algorithm and pushes the limit of the mmWave radar’s ranging accuracy.

Figure 14 demonstrates the localization error when a single target locates diagonally in front
of mmWave device (AoA > 5°). As shown, milliLoc, “peak-pt,” PDA, and GPR achieve localization
error of around 7.6 mm, 15.7 mm, 13.4 mm, and 14.9 mm, respectively. According to the law of
reflection of electromagnetic waves, since the roughness of most targets is less than the wavelength
of mmWave signal, the targets produce strong specular reflections to the incident mmWave signal.
Consequently, most of the energy bounces off in the direction symmetric with the incidence angle.
Because of the small antenna aperture of commercial mmWave radar, only if the signal arrives near
the normal of the target surface, its reflection can be captured by the receive antennas [6, 8]. In total,
when the AoA of the target increases, the signal reflected by targets may spread to other directions,
and the signal received by mmWave device would be attenuated, which will lead to more noise
interference and generate more inaccuracy during the solution of optimization. From the results,
the localization performances of the above four methods all deteriorate as the AoA of the target
increases. Nevertheless, milliLoc still achieves the best performance among the compared methods,
which illustrates the effectiveness of our system.

4.2.2 Multiple Targets Localization Estimation Accuracy. We evaluate the localization perfor-
mance with multiple targets. Figure 15 plots the localization error when two or three targets locate
directly in front of mmWave device. As illustrated, milliLoc achieves higher performance with a
median error of 11.3 mm and 17.7 mm for two-target and three-target scenarios, respectively. As
the number of targets increases, the localization performance would decline due to the raising
in interference between targets and the weakening of the reflected signals from certain targets.
However, milliLoc could still achieve consistent localization performances for multiple targets.

4.2.3 AoA Estimation Accuracy. We compare AoA estimation accuracy of milliLoc against the
common method, “peak-pt,” and a state-of-the-art work, GPR. “peak-pt” uses the phase of peak
point in range spectrum to calculate AoA directly, and GPR enhances the spatial resolution by ap-
plying Gaussian process regression on the MUSIC algorithm. Figure 16 shows the AoA estimation
performance. milliLoc achieves a median error of 6.6°, which outperforms “peak-pt” with a me-
dian error of 9.6° and GPR with a median error of 8.5°, with a decrease of error by 31.2% and 22.3%.
Due to the limited numbers of antennas of commercial devices, the thermal noise, and multi-path
reflections during the practical environment [28, 44], the AoA measurement performances of the
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Fig. 15. Localization error when multiple targets lo-
cate directly in front of mmWave device.

Fig. 16. AoA measure accuracy.

Fig. 17. Impact of amplitude modulation on location
error.

Fig. 18. Impact of sample number on location and
AoA error.

above three methods both have a bit of deviations. With the application of the spatial resolution
enhancement algorithm, the measurement error of AoA only has slight decline. However, milliLoc

modifies the initial phase of each antenna by calculating the complex amplitude of the sinusoidal
component, which improves the AoA measurement accuracy without extending the number of
antenna arrays.

4.3 Parameter Study

4.3.1 Impact of Amplitude Modulation. In this experiment, we evaluate the performance of am-

plitude modulation (AM), as introduced in Section 3.2. We compare the localization error with
or without amplitude modulation. The results are shown in Figure 17. As can be seen, without
amplitude modulation, the median localization error increases to 9.9 mm, and AM reduces the lo-
calization error by 23.2%. The results demonstrate that AM can diminish the disturbance of samples
with lower amplitude and enhance the system performance.

4.3.2 Impact of Sample Number. In Section 3.2, we discuss that milliLoc needs at least two DFT
samples to solve the optimization problem and acquire target range and AoA. We evaluate the per-
formance when choosing different DFT sample numbers to calculate the location information. One
single target is located directly in front of the mmWave device. Figure 18 shows the localization
error and AoA error with various sample numbers, respectively. During the evaluation, we select
DFT samples as close as possible to peak points to figure out the signal parameters with the pur-
pose of bringing down the noise interference. As shown, the optimal sample number is three, which
is an intermediate value in candidates. Even though we could solve the optimization problem by
only two samples, it is less resistant to noise. If one sample suffers from stronger noise interference
or calculation deviation, then the performance will deteriorate drastically. In our evaluation, the

ACM Transactions on Sensor Networks, Vol. 19, No. 3, Article 59. Publication date: April 2023.



59:16 G. Zhang et al.

Fig. 19. Impact of target range on location and AoA
error.

Fig. 20. Impact of target AoA on location and AoA
error.

AoA error of two sample numbers grows significantly compared to other selections. Nevertheless,
more than three sample numbers would bring up the error slightly. Considering that as the sam-
ple numbers increase, the amplitudes of the additional samples are commonly lower, and samples
with lower amplitude are more susceptible to random noise and cause larger calculation errors
during the process of solving. In addition, it will enhance the resource overhead. Consequently,
the most appropriate choice is to use three samples to solve the optimization problem with only
one frequency component.

4.3.3 Impact of Target Range. To evaluate the impact of the target range between the device
and the target, we keep the target AoA to around 0° and change the distance between the target
and mmWave device. Figure 19 shows the localization error and AoA error of milliLoc. As shown,
when the distance changes from 1 m to 5 m, milliLoc achieves millimeter-level median localization
error, and its median AoA error is less than 10°, which keeps consistent localization performances
during various distances.

4.3.4 Impact of Target AoA. We further explore the impact of different target AoA. Figure 20
shows the localization error and AoA error. As shown, the range performance keeps stable at a low
level with lower AoA. When target AoA is more than 20°, the localization error increases sharply.
Similarly, the AoA performance deteriorates gradually with the target AoA augmenting. As intro-
duced in Section 4.2.1, the reflection signal of targets would be attenuated and the environmental
and hardware noise would compound the localization performance due to specular reflections
to the mmWave signal as the target AoA increases.To achieve better localization performance of
mmWave radar, we would better apply the system to the scenarios with lower AoA.

4.3.5 Impact of Different Targets. To determine whether milliLoc consistently works for differ-
ent targets, we choose five boxes with different sizes to further evaluate the robustness of milliLoc.
The sizes of different cuboid boxes are 29.7 cm × 6.8 cm × 18.4 cm, 16.8 cm × 5.8 cm × 13.0 cm,
20.0 cm × 5.3 cm × 17.5 cm, 21.0 cm × 4.2 cm × 14.0 cm, and 33.8 cm × 72 cm × 30.9 cm. Figure 21
demonstrates the localization error and AoA error of various targets. Results show that localiza-
tion and AoA error may fluctuate slightly due to various box sizes. However, milliLoc achieves
consistent performance across all targets.

4.3.6 Impact of Environments. The performance of milliLoc in different experiment environ-
ments is shown in Figure 22. Comparing the clusters, the performance of milliLoc is almost the
same in different environments. Specifically, milliLoc achieves median localization and AoA error
of around 6.0 mm and 7.0° in three various scenarios. It demonstrates that milliLoc is applicable in
different environments, making our system more ubiquitous.
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Fig. 21. Impact of different targets on location and
AoA error.

Fig. 22. Impact of experiment environments on loca-
tion and AoA error.

Fig. 23. Impact of bandwidth on location and AoA
error.

Fig. 24. System latency analysis.

4.3.7 Impact of Bandwidth. As demonstrated in Section 2, the available bandwidth is usually
less than 4 GHz. We further evaluate the impact of bandwidth on system performance. The tar-
get is located directly in front of the mmWave device. From Equation (4), the range resolution
will augment with the decreasing of bandwidth, so the localization error would increase when
the bandwidth is reduced theoretically. From Figure 23, localization error will rise significantly
with bandwidth decreasing. Similar to the localization performance, the AoA performance would
decline with the decreasing bandwidth. When the bandwidth decreases to 0.9 GHz, the median
localization error and AoA error drop to 17.4 mm and 9.4°, respectively. When the bandwidth de-
creases, the range resolution will deteriorate and the random noises in the IF frequency spectrum
will be amplified, which enlarges the calculation error of complex amplitude of sinusoidal compo-
nent and brings down the AoA performance. To achieve better results, we are supposed to apply
the maximum bandwidth to the experiment.

4.3.8 System Latency Analysis. To validate the efficiency of milliLoc, we further evaluate the
system latency. The system is running on a laptop with 8 cores of Intel i7-6700HQ CPU @ 2.60
GHz. Figure 24 illustrates the end-to-end latency of milliLoc, including range calculation delay and
AoA calculation delay. As shown, the average end-to-end latency is 14.6 ms, with an average of 13.1
ms for range calculation and 1.5 ms for AoA calculation. The results show that most of the system
latency is induced by the spectral peak reconstruction algorithm, especially the optimization process.
To conclude, the latency evaluation results indicate milliLoc can achieve real-time calculation for
the radio frame rate of 50 Hz.
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5 DISCUSSION

In this work, we propose a millimeter-level multi-target localization system based on COTS
mmWave radar, and there are some notes and future directions to extend our work, which we
discuss below.

Localization of multiple targets. In Section 4.2, we evaluate the system performance when
two or three targets locate in the monitoring area. In theory, the multi-target localization algorithm
we proposed in Section 3.3 is able to localize more targets simultaneously. However, when the
number of targets increases, the reflection signal of certain targets may be diminished, and different
targets may even occlude each other, which causes the degradation of localization performance. We
believe that the temporal continuity of target motion can contribute to reducing the impact of the
above interference. By integrating the continuity of distance changes between adjacent moments
and the measurement of the mmWave device, we are capable of mitigating the influence of signal
interference. We leave it for future work.

Localization of different kinds of targets. In Section 4.1, we tie boxes with various sizes to a
control car and change the location of boxes by monitoring the control car to capture the ground
truth with millimeter-level localization accuracy and evaluate the system performance precisely.
Among existing works, mTrack [37] utilizes a PC host to control the remote movement of the
target (e.g., a pen) and obtain the millimeter-level ground truth, while mmTrack [40] uses pre-
marked trajectories as the ground truth, which can achieve centimeter-level accuracy for person
localization. However, PC-controlled movements usually have a small monitoring area, and pre-
marked trajectories are difficult to acquire more precise localization results. The above two
schemes are tough applied to the evaluation of our system. In fact, our system can locate various
types of targets. Combined with the 3-D antenna array, we can obtain the distance distribution pro-
file in both the vertical and horizontal directions and further get the target meshes, which remains
an important topic for further research.

6 RELATED WORK

In this section, we briefly summarize the most related works in the following categories.
RF-based active localization. Active localization requires targets to carry dedicated de-

vices to transmit or receive RF signals for localization, including RFID tags [34, 45], mobile
phones [16, 17, 21, 31, 39, 49], and wearable devices [11, 12]. RIM [39] and SpotFi [16] both build
a complex antenna array and use Wi-Fi signals for target locating. For sound-based active local-
ization, CAT [21] combines Doppler shifts estimated by the acoustic signal and measurements
provided by the Inertial Measurement Unit to enhance the localization accuracy. Vernier [49] re-
duces the tracking delay and overhead by removing the complex frequency analysis process and
derives moving distance directly by the phase change of sound signal. RF-IDraw [34] and Tago-
ram [45] adopt RFID tags for target tracking. However, systems based on active localization are not
applicable to some scenarios, such as intruder detection. In addition, multiple-target localization
requires a large number of dedicated devices, which calls for a large financial expense. In contrast,
milliLoc could achieve target localization without any specific device carried by targets, which is
convenient for applying to more scenarios and reduces the utilization of dedicated devices.

RF-based passive localization. Passive localization employs reflection signals to detect and
track targets, including acoustic signals, Wi-Fi signals, and mmWave signals. VoLoc [32] designs
an iterative cancellation algorithm for AoA estimation through the multipath of acoustic signal,
followed by joint optimization of user distance and orientation. LLAP [36] exploits the phase
changes of sound signals caused by target movements and transfers the phase changes into
the displacement, which achieves millimeter-level accuracy within a 30 cm range. Strata [46]
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estimates the channel impulse response (CIR) to tackle multi-path propagation and extracts
the phase change of the corresponding tap to estimate the distance change. Wi-Fi-based local-
ization work usually utilizes sundry channel parameters from finer-grained CSI other than RSSI
to locate the target, including Angle of Arrival (AoA), Time of Flight (ToF), and Doppler

Frequency Shifts (DFS) [14, 25]. Some works jointly estimate multiple parameters to achieve
better accuracy [15, 20, 27, 41]. Reference [47] proposes a metric called SSNR to quantify the signal
sensing capability and strengthens the reflection signal by multiple antennas to increase the Wi-Fi
sensing range. Despite that existing localization systems are able to locate and track targets, most
do not achieve higher localization accuracy. Wi-Fi-based solutions could achieve decimeter-level
accuracy generally due to the limitation of bandwidth and antenna number. Sound-based systems
usually have a small coverage area and deteriorate under noise surroundings due to lower input
SNR. Lidar-based localization methods [35] usually need expensive equipment and they could not
work normally under adverse weather conditions, such as fog and sandstorm.

Recently, mmWave devices have attracted increasing interest, which are exploited to target lo-
calization. mmTrack [40] and Reference [38] utilize 60 GHz Wi-Fi technology and 24 GHz FMCW
radar to accomplish multiple persons tracking, respectively, which could achieve decimeter-level
accuracy. mTrack [37] designs a 60 GHz Wi-Fi system to track writing objects with signal phase
shifting but it only works well within a limited range. Osprey [24] devises an inverse synthetic
aperture radar algorithm that exploits the natural rotation of the tire and measures accurate tire
wear. Nevertheless, those works do not concentrate on the limited range resolution of mmWave
radar. mmVib [13] proposes a multi-signal consolidation model, which describes the properties
of reflected mmWave signals to capture the sub-millimeter-level vibrations. However, It can only
sense displacements smaller than the signal wavelength and can not obtain precise absolute range.
Compared with these works, milliLoc could achieve millimeter-level localization accuracy by push-
ing the limit of range resolution of mmWave radar without the movement of the target.

Super-resolution algorithms. Researchers put forward many super-resolution techniques, in-
cluding MUSIC [30], ESPRIT [29]. The MUSIC [30] algorithm utilizes a linear antenna array and
calculates the power spectral density function in different directions to get the directions of ar-
rival. The ESPRIT [29] algorithm designs a signal parameter estimation method based on total
least-squares, which could be used to direction-of-arrival estimation and system identification.
Based on these classical super-resolution algorithms, new localization methods are proposed. Ubi-
carse [18] is able to perform synthetic aperture radar on handheld devices twisted by the users
along unknown paths. It allows mobile devices to emulate an antenna array. D-MUSIC [26] elimi-
nates the unknown phase offsets on COTS Wi-Fi devices with only one rotation and achieves ac-
curate AoA estimation. GPR [23] calculates the range-velocity and range-azimuth heatmaps based
on the MUSIC algorithm and implements Gaussian process regression to refine the range and the
angular localization of the target. It demands pre-collected data to train the Gaussian process re-
gression model before usage. Different from existing works that only concentrate on increasing
spatial resolution, our algorithm attempts to push the limit of frequency resolution to make the
localization results more accurate.

Zero-padded DFT [10] only improves the sampling density of the spectrum. It does not change
the frequency resolution and could not distinguish adjacent multiple frequencies. In addition, it
does not calculate the amplitude of each frequency component, which could not figure out the
AoA of targets. PDA [43] sets different sinusoidal functions as kernel functions and conducts the
correlation calculation with the received signal to achieve the de-alternating performance and
estimate the signal frequency. Essentially, the measurement accuracy of the scheme is still limited
by the signal bandwidth. Compared with these methods, our system pushes the limit of mmWave
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radar-based localization by more accurate frequency estimation during single-target and multiple-
target situations and improves the AoA estimated accuracy by complex amplitude.

7 CONCLUSION

In this article, we propose milliLoc, a millimeter-level multi-target localization system based on
COTS mmWave radar. milliLoc pushes the limit of the mmWave ranging accuracy by leveraging a
novel-designed spectral peak reconstruction algorithm, then innovatively utilizes the complex am-
plitude information to improve the accuracy of AoA measurement. Based on our further extension,
milliLoc could handle both the single-target and the multi-target situations. Extensive evaluation
results show that milliLoc achieves millimeter-level localization accuracy and decreases the AoA
measure error by 31.2%. Our system can be easily integrated with other existing solutions, thus
taking a promising step towards high-accuracy location-based applications.
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