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Abstract—Depth estimation is crucial for numerous applica-
tions, including autonomous driving, robotic navigation and aug-
mented reality. Existing solutions based on LiDAR and mmWave
technologies are constrained by high deployment costs, while
those utilizing monocular vision suffer from limited accuracy. To
address these challenges, this paper proposes WiViD, a diffusion-
based depth estimation system that leverages commercial Wi-Fi
and vision. Diffusion models, with their ability to iteratively refine
predictions, offer significant advantages in producing accurate
and detailed estimations. We introduce a Multimodal Conditional
Diffusion (MMCD) mechanism and design two encoding modules:
the Complex-Valued CSI Encoder (CCE) and the Residual
Image Encoder (RIE). These components fully exploit the spatio-
temporal information inherent in Wi-Fi CSI and enable the
effective fusion of Wi-Fi CSI and RGB image data, which results
in high-precision and robust depth estimation. Experimental
results in real-world scenarios demonstrate that WiViD out-
performs state-of-the-art (SOTA) monocular methods, reducing
the Absolute Relative Error (ARE) by 67.2%, highlighting the
advantages of WiViD in terms of accuracy and reliability.

Index Terms—Depth estimation, Wireless sensing, Diffusion
model, Multimodal fusion, Wi-Fi CSI

I. INTRODUCTION

Depth estimation provides 3-D perception capability, which
is essential for numerous applications, such as autonomous
driving, robotic navigation, and augmented reality [1]. Over
the past decades, significant research efforts have been devoted
to this field.

Most existing depth estimation methods can be divided
into two categories: active and passive. Active methods, such
as mmWave Radar [2] and LiDAR [3], measure depth by
projecting millimeter waves or lasers and receiving the re-
flected signals. While these methods are highly accurate in
localization [4], they rely on expensive equipment, limiting
their widespread use. Passive methods, based on a single
image, are more common but less accurate. Monocular vision
estimates depth using RGB images, which is a low-cost and
portable method but is easily affected by lighting and texture.
Recent research has attempted to combine active and passive
methods, such as combining RGB with infrared measurements
[5], or fusing RGB with LiDAR [6] or mmWave [7]. However,
these methods have high computational complexity and do not
address equipment costs. Therefore, improving the accuracy
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and robustness of depth estimation while maintaining cost-
effectiveness remains a significant challenge.

Recently, with the rapid development of wireless communi-
cation technology, localization [8]-[10] and sensing [11]—[13]
based on Wi-Fi signals has become a research focus due to
its ubiquitous availability, low cost, and ease of deployment.
This Wi-Fi-based sensing solution does not require expensive
hardware and offers pervasiveness.

Considering the above situation, we identify an opportunity
to achieve depth estimation by fusing two modalities: Wi-
Fi and vision. Wi-Fi channel state information (CSI) [14],
[15] can capture three-dimensional spatial information by
detecting variations in signal reflections caused by objects in
the environment, making them highly sensitive to changes in
the signal propagation path (i.e., radial direction). In contrast,
vision-based solutions excel at detecting changes in the pixel
plane (i.e., tangential direction), providing detailed spatial lo-
cation information with high pixel-level precision. Therefore,
by fusing these two complementary modalities, a multimodal
solution has great potential to enhance both the accuracy and
robustness of depth estimation, providing more refined and
reliable 3D perception capabilities for upper-level applications.

However, translating this intuition into a practical system
faces two main challenges.

Challenge 1: How to design a high-precision Wi-Fi and
vision multimodal depth estimation framework. Previous
methods combining Wi-Fi and vision are primarily designed
for classification tasks, such as human activity recognition.
However, depth estimation, being a regression task, demands
not only higher precision but also continuous and high-
resolution distance data. Unlike classification, which deals
with discrete labels, depth estimation requires handling con-
tinuous variables. Consequently, the limitations of traditional
data fusion strategies are more pronounced in this context.

Challenge 2: How to extract precise spatial information
from complex-valued Wi-Fi CSI signals. Wi-Fi CSI signals
have complex domain characteristics, including amplitude and
phase information. Existing real-domain processing methods
are insufficient for handling the high spatio-temporal coupling
features in the complex domain. Due to the multipath propaga-
tion effect, the blending of CSI signal information in time and
space significantly increases the difficulty of feature extraction.
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Consequently, traditional methods cannot fully utilize the
rich spatio-temporal information within complex-valued CSI
signals. Constructing a neural network that operates in the
complex domain to extract information from CSI signals for
guiding depth reconstruction has become a critical research
challenge.

To tackle these challenges, we develop a system called
WiViD, which utilizes a generative diffusion model for mul-
timodal depth estimation. Diffusion models, known for their
iterative refinement processes, excel in producing high-quality
and detailed predictions. Specifically, we design two network
structures in WiViD for processing different data modalities:
the Complex-Valued CSI Encoder (CCE) and the Residual Im-
age Encoder (RIE). The CCE is designed to encode complex-
valued Wi-Fi CSI, while the RIE processes RGB image
information. To effectively fuse these two data modalities,
we propose the Multimodal Conditional Diffusion (MMCD)
mechanism. The MMCD concatenates the features extracted
by the CCE and RIE, transforming them into the control
condition using linear transformations and activation functions.
In the U-net [16] Denoising Module, the control condition
guides the process of denoising, enabling accurate depth
estimation.

We implement WiViD and conduct extensive experiments
in real-world scenarios. We compare it with two advanced
monocular visual depth estimation methods: DORN [17]
and VA-DepthNet [18]. The experimental results show that
WiViD’s ARE is only 0.022, outperforming DORN’s 0.153
and VA-DepthNet’s 0.059, demonstrating the outstanding per-
formance of WiViD. Additionally, we conduct experiments
to confirm the effectiveness of WiViD’s multimodal fusion
mechanism.

Our contributions are summarized as follows:

e We propose WiViD, the first depth estimation system incor-
porating an innovative Wi-Fi and vision multimodal diffusion
model. WiViD achieves excellent experimental results, repre-
senting a promising step in the exploration of depth estimation
by fusing Wi-Fi and vision.

e QOur proposed Complex-Valued CSI Encoder (CCE) of-
fers unique advantages in handling spatio-temporal complex-
valued signals and can be directly applied to other wireless
sensing applications (e.g., human gesture recognition, fall
detection) to enhance their feature extraction capabilities.

e Our proposed Multimodal Conditional Diffusion (MMCD)
mechanism is a pioneering approach to Wi-Fi-vision fusion
within a diffusion framework. The MMCD mechanism can
be extended to other sensing modalities, establishing a new
paradigm for multimodal fusion perception.

II. SYSTEM OVERVIEW

WiViD is a Wi-Fi and vision depth estimation system that
utilizes multimodal diffusion. As shown in Fig. 1, WiViD
extracts features from Wi-Fi CSI signals and RGB images,
encoding them as control conditions to guide the diffusion
model in generating accurate depth maps.
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Fig. 1. System Overview of WiViD

Similar to DDPM [19], our diffusion model consists of two
stages: the forward diffusion stage and the reverse denoising
stage. During the forward diffusion stage, Gaussian noise
is incrementally added to the authentic depth map, gradu-
ally transforming it into a noise distribution. In the reverse
denoising stage, WiViD employs the U-net Noise Prediction
Module to predict the noise in the x; input depth map. WiViD
progressively removes the predicted noise at each step, thereby
reconstructing the x;_; depth map until x, the final noise-
free depth map. The reverse denoising stage is divided into T’
steps. The training process involves both stages, whereas the
prediction process only requires the reverse denoising stage.

The architecture of WiViD consists of three key components:
the Complex-Valued CSI Encoder (CCE), the Residual Image
Encoder (RIE), and the U-net Noise Prediction Module. These
modules are unified under the Multimodal Conditional Diffu-
sion (MMCD).

When performing depth estimation tasks, the algorithm
samples random Gaussian noise and gradually transforms it
into a depth map. The CCE and RIE extract and encode
features from the input Wi-Fi CSI and RGB images into
high-dimensional vectors. These vectors undergo multimodal
fusion in the MMCD, forming a comprehensive representation
used as a control condition during the denoising stage. This
control condition, containing inherent spatial data from Wi-Fi
and vision inputs, is crucial for generating the depth map. In
each block of the U-net Noise Prediction Module, this control
condition is added to the predicted intermediate representa-
tion, guiding the denoising process to achieve accurate depth
estimation.

III. WiViD DESIGN

WiViD is designed for depth estimation and proposes a deep
learning strategy based on a diffusion model. It addresses
two major challenges: 1) extracting and encoding features
from RGB images and Wi-Fi CSI signals, particularly Wi-
Fi CSI; and 2) fusing the encoded information from these two
modalities to guide the denoising stage of the diffusion model
for depth estimation.
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To address these challenges, we introduce the RGB Image
Encoder (RIE) and the CSI Signal Encoder (CSE) into the
diffusion model. Additionally, we employ the Multimodal
Conditional Diffusion (MMCD) mechanism for multimodal
fusion.

To enhance prediction accuracy in the depth estimation,
WiViD employs the SiLU activation function.

A. Diffusion for Depth Estimation

Our diffusion model consists of two stages: the diffusion
stage and the denoising stage.

In the diffusion stage, the authentic depth map xg is
gradually converted into pure noise x7 through a series of
predefined noise scales over 7' steps. This transformation
is governed by the diffusion process g(x:|x(), producing a
noised depth map x, for ¢t € {1,...,T'}, defined as a random
process:

q(mi|@o) == N (243 Vauxo, (1 — ay)I),

where & is the cumulative product of the noise scales at each
step, indicating the total noise level from step 1 to ¢. It is
calculated as a; = Hi:o g, where oy = 1 — 35, and [,
represents the noise variance schedule.

The denoising stage involves training a deep neural network
€p to predict the noise in the noised depth map x;, using the
RGB image M and Wi-Fi CSI H as the control condition. A
proportion of this noise, determined by &, oy and [, is then
removed to obtain x;_1. This process is iteratively continued

(D
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until the authentic depth map x( is recovered. This procedure
is described by:

pQ(mt—1|mt) = N (wt—l; /Lg(xt,t, M7H)a

(

ail), (2
(wtvtanH))v

3)

1 B
oz, t, M, H) = NG Ty meg
where o? represents the transition variance, and
po(xe, t, M, H) represents the process of removing
predicted noise to obtain the denoised result at each step.

The training process of WiViD involves both a diffusion
stage and a denoising stage, as illustrated in Algorithm 1.
Noise is added to the authentic depth map x, with the noise
level determined by ¢, randomly selected from {1,...,7T'}.
Concurrently, the image M and CSI H are input as the
control condition. Subsequently, the model €y predicts the
added noise, recovering the authentic depth map x; from
the noise-corrupted data. This training process optimizes the
parameters of the model €y to minimize the difference between
the predicted noise and the actual noise added to x.

The sampling process requires only the denoising stage, as
illustrated in Algorithm 2. Gaussian noise xr is randomly
generated and input along with the corresponding image
M and CSI H. Using the trained model €y, the noise is
iteratively removed, starting from step 7' and continuing until
the authentic depth map x is recovered.

For depth images of WiViD, depth can be represented as
d € RIXMXN_ where M and N denote the height and
width of the depth map. Unlike RGB images with three
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channels, depth maps have only one channel. The depth map
is normalized to the range [—1, 1] to match the Gaussian noise
mean and variance in diffusion model. So that the diffusion
and denoising stages are applied to these normalized depth
maps.

Algorithm 1 WiViD Training Algorithm
Input: Dataset following @ ~ ¢(x), image M and CSI H
Output: Noise prediction model €g
1: repeat
: xo ~ q(xo), M and H from dataset
t ~ Uniform({1,...,T})
e~ N(0,1)
Take gradient descent step on
Volle — eo(v/arxo + /1 — ae,t, M, H)|?

until converged

2
3:
4:
5
6
7

Algorithm 2 WiViD Sampling Algorithm
Input: Noise prediction model €y, image M and CSI H
Output: Depth map x¢

1. xp NN(O,I)

2fort="T,...,1do

3: i1 = \/% Ty — \}%Gg(wt,t,M,H)>
4: end for

5: return xg

B. Residual Image Encoder (RIE)

To fully leverage the information in RGB images, we design
the RIE module using ResNet-18 [20] for feature extraction
and encoding. By removing its classification layer, we obtain
an intermediate representation rich in semantic content, essen-
tial for encoding. This representation encapsulates high-level
image features. Using RIE for feature extraction, we encode
the image M into a vector for depth estimation, X1y, as
described below:

Xm = ResNet(M).
C. Complex-Valued CSI Encoder (CCE)

To effectively encode Wi-Fi CSI data and extract its spatio-
temporal features, we design a Multi-Head Transformer En-
coder that supports complex-valued calculation. This encoder
not only preserves the authentic information of the CSI signal
but also captures the interactions and dependencies between
signals through the Attention mechanism.

Complex-Valued Multi-Head Attention. In this Trans-
former Encoder, we extend Attention to the complex domain.
For given X € CF*n_firstly it will perform linear projection:

Q=XW,y, K=XWg, V=XWy, ()

then we get Q € CE*da, K ¢ CL* and V € CLxdv,
in which the multiplication follows the principles of complex
multiplication, and W € Clnxde Wy € Cdn*dx and
Wy € C%*dv are projection parameters. Softmax and

“4)

76

Attention mechanism are also extended in complex domain,
and can be defined as follows:

ol2leiZ(2)

T ST ©

) v, ()

where 7 is the imaginary unit. Furthermore, we employ Multi-
Head Attention with A heads, defined as follows:

softmaxcomplex (%

QK"

Attention(Q, K, V') = softmaxcomplex | ———
(Q 1V g ( Vi

MultiHead(Q, K, V) = (a1, az,...,a1)" Wo, (8)
where W € Chdvxdo ig the final projection parameter, and
a; = Attention( X W5, XWi. XW?).

Complex feed-forward module. The complex feed-forward
module contains linear transformations and activation func-
tions, which support calculations in the complex domain, and
can be defined as follows:

| R(wz + b)
we b= {S(wm + b)}
w, —w;| |x, b,
1 F RS R
Ucomplex<x) = U(xr) +j0(aji)7 (10)

where o(-) represents the activation function.

The Complex Transformer Encoder block consists of Com-
plex Multi-Head Attention and Complex Feed-Forward mod-
ules. The Complex Transformer Encoder is structured with 32
of these blocks.

Complex-to-Real Transformation Layer (C2R). Subse-
quently, we design a Complex-to-Real Transformation Layer
following the Transformer Encoder. This layer converts com-
plex features to real features. C2R is defined as follows:

C2R(X) = o(Linear; (R(X)) + Linear2($(X))). (11)

Following the Transformer Encoder and C2R, we apply an
average pooling layer to the CSI data for temporal averaging.
This step compresses the data and transforms dynamic CSI
features into a static representation, aligning them with single-
frame image features. Subsequently, an MLP further extracts
and compresses the feature vector from the average pooling,
resulting in a compact feature representation.

In summary, the CCE can be described as follows:

X1 = MLP(AvgPool(C2R(CTransEnc(H)))),  (12)
where CTransEnc represents the Complex Transformer En-
coder, H is the Wi-Fi CSI matrix, and Xy is the processed
CSI embedding.
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D. Multimodal Conditional Diffusion (MMCD)

To fuse RGB images and Wi-Fi CSI data, we integrate the
Multimodal Conditional Diffusion (MMCD) mechanism into
the denoising stage of the diffusion model. RGB images are
encoded by the RIE to produce image embeddings, while CSI
data is encoded by the CCE to produce CSI embeddings. Both
encoders are trained simultaneously with the U-net.

Within U-net blocks, RGB and CSI embeddings are con-
catenated to form a unified feature representation, then refined
through activation functions and a linear layer to produce a
block-specific fusion condition embedding X r. Each block of
the U-net utilizes its own X to improve feature adaptability
and expressiveness. Xy can be represented as follows:

X = Linear(c(RIE(M) ® CCE(H))),

where M and H are matrices of RGB image and Wi-Fi CSI.

X is then added to the intermediate feature representation
within the U-net blocks. For each channel of the intermediate
representation, a broadcasting mechanism is used to add the
corresponding values from Xy, thereby guiding noise predic-
tion for depth estimation. The conditional control process can
be described as follows:

(13)

N’ =N+ Xy, (14)

where N and N/ are intermediate representation before and
after conditional control.

IV. EVALUATION
A. Methodology

Implementation. We utilize MATLAB for Wi-Fi CSI data
pre-processing, converting the raw CSI into tensors suitable
for model training. WiViD is implemented in PyTorch and
trained on an NVIDIA GeForce RTX 3090. During training,
the number of steps 7' is set to 50. A cosine annealing strategy
dynamically adjusts the learning rate from le-4 to le-7. The
model completes 100 epochs of training with a batch size of
16.

Dataset and Data Preprocessing. For our experiments, we
use a subset of the XRF55 [21] dataset, extracting RGB images
and Wi-Fi CSI from a meeting room, with depth maps as the
ground truth. The spatial layout is shown in Fig. 3. The dataset
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comprises 10,000 RGB images created by frame-sampling
400 randomly selected videos. To streamline calculations, the
original 1280 x 720 RGB images and depth maps are resized
to 160 x 90 pixels. Wi-Fi CSI data for each video frame
is collected and concatenated from three Wi-Fi RXs to form
a unified dataset. The data is then shuffled and divided into
training and testing sets in a 9:1 ratio for WiViD training and
evaluation.

Evaluation Metrics. Various evaluation metrics can mea-
sure the effectiveness of depth estimation; we select two
commonly used metrics: error values and threshold accuracy.
Lower error values between the predicted depth and the ground
truth indicate better depth estimation, while higher threshold
accuracy signifies improved performance.

Absolute Relative Error (ARE) and Relative Squared Error
(SRE) describe the general distance between the predicted
depth and the ground truth.

¢ Absolute Relative Error (ARE):

N
1 ‘dtruei —d red z|
ARE = — 2 prect 15
N ; dtrue,i ( )
* Squared Relative Error (SRE):
N 2
1 |dtrue i dpred i
SRE = — : : 16
N Zz:; dtrue,i ( )

Root Mean Square Error (RMSE) and Root Mean Square
Logarithmic Error (RMSELog) are especially sensitive to local
inaccuracies of depth estimation.

e Root Mean Square Error (RMSE):

N
1
RMSE = N Z |dtruc,i - dprcd,i|2- (17)
i=1
* Root Mean Square Logarithmic Error (RMSELog):
1 XN
RMSELog = | | - > llog dirne,i — 10g dpreai|*.  (18)

i=1

Threshold accuracy measures the similarity between the
predicted depth and the ground truth, providing a quantitative
evaluation of the model’s accuracy within a specific depth
range. It includes three primary metrics: d;, do and 03,
corresponding to different depth thresholds.

e Threshold accuracy (Jy) is defined as the percentage of
Doy domets ) < 1.25%, for k = 1,2,3.

It is important to note that in the ground truth depth
map, there are pixels with undefined depth. When calculating
metrics, we exclude these pixels.

dpred,i dirue,i

dpred,; Where max (

B. Overall Performance

To assess the performance of WiViD, we select two promi-
nent monocular depth estimation algorithms as comparison
benchmarks: DORN [17] and VA-DepthNet [18]. DORN
transforms depth prediction into an ordinal classification prob-
lem, employing deep learning to capture relative depth order
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at the pixel level for precise depth mapping. VA-DepthNet
incorporates first-order variational constraints and encoder-
decoder network architecture. To ensure a fair comparison, we
fine-tune the open-source implementations of these algorithms
on our dataset.

As depicted in Fig. 5(a) and Fig. 5(b), WiViD outper-
forms existing benchmarks, particularly on the ARE metric,
achieving a score of 0.022 compared to DORN’s 0.153 and
VA-DepthNet’s 0.059. On the J; metric, which represents
the highest demand for depth estimation accuracy, WiViD
reaches 0.977, significantly higher than DORN’s 0.786 and
VA-DepthNet’s 0.943.
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As depicted in Fig. 4, the advantages of WiViD are especially
notable. While DORN accurately identifies human contours
and their relative depth, it fails to provide precise depth
estimation due to inaccuracies in the depth scale, resulting in
a higher RMSE than WiViD. VA-DepthNet grasps the overall
scale of depth estimation but struggles to clearly segment
human actions, leading to a loss of accuracy. In contrast,
WiViD not only accurately estimates the static depth in the
scene but also precisely captures changes in depth caused
by human actions, thereby achieving more accurate depth
estimation.

C. Micro Benchmarks

1) Effectiveness of Multimodal Fusion

To evaluate the effectiveness of multimodal fusion in WiViD,
we conduct an experiment comparing multimodal and single-
modal methods. Specifically, we examine the performance
of using RGB images alone, Wi-Fi CSI data alone, and the
combination of both.

We remove one of the modalities to obtain depth estimation
results for “Vision Only” and “Wi-Fi Only”. As shown in
Fig. 6(a) and Fig. 6(b), the multimodal fusion method in
WiViD consistently outperforms both single-modality methods
across all metrics. Specifically, the RMSE for the multimodal
method, “Vision Only” and “Wi-Fi Only” are 0.381, 0.407
and 0.768, while the §; values are 0.977, 0.973 and 0.918.
These results indicate that the multimodal method optimizes
depth estimation performance, demonstrating the effectiveness
of combining vision and Wi-Fi for depth estimation.

To explore the role of fusing Wi-Fi and vision for depth
estimation, we selected two sets of samples for comparative
analysis, as illustrated in Fig. 7. It is evident that the “Vision
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Only” method is less accurate in many details of depth esti-
mation compared to the multimodal fusion method. Moreover,
the “Wi-Fi Only” method struggles to capture depth changes
caused by human movements.

Monocular visual depth estimation relies on extracting vi-
sual cues from a single image to infer depth but lacks direct
physical depth information, limiting its accuracy. In contrast,
Wi-Fi CSI, which is closely related to the geometric structure
of space, provides direct physical depth information. How-
ever, when used alone, Wi-Fi CSI lacks pixel-level resolution
and texture details, affecting its fine-scale depth estimation
capability. Our observations indicate that fusing Wi-Fi CSI
and RGB images provides more detailed and complementary
information for depth estimation, thereby improving accuracy.
When RGB images alone fail to provide accurate depth
estimation, the integration of Wi-Fi CSI significantly enhances
the system’s robustness.

2) Impact of Diffusion Steps

TABLE I
PERFORMANCE OF WiViD IN THE IMPACT OF DIFFUSION STEPS

Metrics / T' 35 40 45 50
ARE 0027 0.026 0.022 0.022
SRE 0058 0.050 0.046 0.045
RMSE 0404 0395 0380 0.381
RMSELog | 0.093 0.091 0.087 0.087
o1 T 0974 0975 0977 0977
o2 T 0982 0983 0985 0.985
63 T 0993 0994 0.994  0.995

WiViD is a depth estimation method based on a diffusion
model. During the denoising stage, the diffusion steps 7" affect
both the number of denoising iterations and the amount of
noise removed in each iteration. A smaller 7' requires more
noise to be removed in a single step, and vice versa.

We conduct experiments with different 7" values (35, 40,
45, 50), as shown in Table I. As T increases from 35 to
50, the depth estimation performance of WiViD improves, but
this improvement slows beyond 7" = 45. Increasing 1" within
a certain range enhances depth estimation performance, but
further increases beyond this threshold do not yield significant
improvements.

D. Robustness Experiments

We simulate scenes with underexposure and overexposure at
25%, 50%, and 75%, as outlined in Table II. We then compare
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TABLE II
UNDEREXPOSURE OR OVEREXPOSURE FOR RGB IMAGE

Exposure 0% 50% 75%

Underexposurem g
Overexposure W‘_

the depth estimation capabilities of the multimodal model
against the “Vision Only” model across different exposure
levels. Our findings show that the performance of both models
degrades as texture information decreases. However, the multi-
modal model, which integrates vision and Wi-Fi, outperforms
the “Vision Only” model on all evaluation metrics by aug-
menting depth information when visual texture is lacking. This
superiority is most pronounced in the d; and ARE metrics, as
illustrated in Fig. 8 and Fig. 9. These results suggest that the
enhanced robustness of the multimodal model in the presence
of reduced bright or dark texture is due to the integration of
Wi-Fi CSI, which provides additional depth information and
reinforces the model’s performance in challenging exposure
conditions.
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V. RELATED WORK

We briefly review the related works in the following.

Diffusion Models. Diffusion models have become pivotal
in deep learning and Al Innovations such as GLIDE [22],
DALL-E 2 [23], and Imagen [24] have significantly advanced
text-to-image creation by enhancing image diversity and util-
ity. Latent Diffusion Models (LDM) [25] optimize this process
by operating in a low-dimensional latent space, reducing com-
putational demands while maintaining high-quality outputs.
Additionally, in the field of radio frequency, RF-Diffusion [26]
is a wireless signal generation scheme utilizing a diffusion
model. These advancements have expanded the capabilities
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and applications of diffusion models, making them integral to
Al research and development.

Depth Estimation. Depth estimation is essential for various
technological applications, driving the development of diverse
methods to address this challenge. Convolutional Neural Net-
works (CNNs) are widely employed, with approaches such as
those by Eigen et al. [27] utilizing multi-scale CNNs to achieve
precise depth predictions. MonoDepth [28] leverages a self-
supervised learning framework to estimate depth from single
images, thereby eliminating the need for ground truth data
and significantly enhancing efficiency. Recent advancements
include monocular depth estimation using Transformer archi-
tectures, as demonstrated by MonoViT [29], which captures
long-range dependencies to improve depth prediction. Collec-
tively, these methods advance depth estimation and contribute
to progress in autonomous driving, augmented reality, and
robotics.

VI. CONCLUSION

This paper proposes WiViD, the first Wi-Fi and vision
multimodal fusion depth estimation method. It integrates Wi-
Fi and vision data through a diffusion model. The Complex-
Valued CSI Encoder (CCE), Residual Image Encoder (RIE),
and Multimodal Conditional Diffusion (MMCD) mechanism
ensure effective fusion of Wi-Fi CSI and RGB images. Exper-
imental results demonstrate that WiViD outperforms existing
monocular visual depth estimation methods in real-world
scenarios.
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