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Abstract—Depth estimation is crucial for numerous applica-
tions, including autonomous driving, robotic navigation and aug-
mented reality. Existing solutions based on LiDAR and mmWave
technologies are constrained by high deployment costs, while
those utilizing monocular vision suffer from limited accuracy. To
address these challenges, this paper proposes WiViD, a diffusion-
based depth estimation system that leverages commercial Wi-Fi
and vision. Diffusion models, with their ability to iteratively refine
predictions, offer significant advantages in producing accurate
and detailed estimations. We introduce a Multimodal Conditional
Diffusion (MMCD) mechanism and design two encoding modules:
the Complex-Valued CSI Encoder (CCE) and the Residual
Image Encoder (RIE). These components fully exploit the spatio-
temporal information inherent in Wi-Fi CSI and enable the
effective fusion of Wi-Fi CSI and RGB image data, which results
in high-precision and robust depth estimation. Experimental
results in real-world scenarios demonstrate that WiViD out-
performs state-of-the-art (SOTA) monocular methods, reducing
the Absolute Relative Error (ARE) by 67.2%, highlighting the
advantages of WiViD in terms of accuracy and reliability.

Index Terms—Depth estimation, Wireless sensing, Diffusion
model, Multimodal fusion, Wi-Fi CSI

I. INTRODUCTION

Depth estimation provides 3-D perception capability, which

is essential for numerous applications, such as autonomous

driving, robotic navigation, and augmented reality [1]. Over

the past decades, significant research efforts have been devoted

to this field.

Most existing depth estimation methods can be divided

into two categories: active and passive. Active methods, such

as mmWave Radar [2] and LiDAR [3], measure depth by

projecting millimeter waves or lasers and receiving the re-

flected signals. While these methods are highly accurate in

localization [4], they rely on expensive equipment, limiting

their widespread use. Passive methods, based on a single

image, are more common but less accurate. Monocular vision

estimates depth using RGB images, which is a low-cost and

portable method but is easily affected by lighting and texture.

Recent research has attempted to combine active and passive

methods, such as combining RGB with infrared measurements

[5], or fusing RGB with LiDAR [6] or mmWave [7]. However,

these methods have high computational complexity and do not

address equipment costs. Therefore, improving the accuracy

and robustness of depth estimation while maintaining cost-

effectiveness remains a significant challenge.

Recently, with the rapid development of wireless communi-

cation technology, localization [8]–[10] and sensing [11]–[13]

based on Wi-Fi signals has become a research focus due to

its ubiquitous availability, low cost, and ease of deployment.

This Wi-Fi-based sensing solution does not require expensive

hardware and offers pervasiveness.

Considering the above situation, we identify an opportunity

to achieve depth estimation by fusing two modalities: Wi-

Fi and vision. Wi-Fi channel state information (CSI) [14],

[15] can capture three-dimensional spatial information by

detecting variations in signal reflections caused by objects in

the environment, making them highly sensitive to changes in

the signal propagation path (i.e., radial direction). In contrast,

vision-based solutions excel at detecting changes in the pixel

plane (i.e., tangential direction), providing detailed spatial lo-

cation information with high pixel-level precision. Therefore,

by fusing these two complementary modalities, a multimodal

solution has great potential to enhance both the accuracy and

robustness of depth estimation, providing more refined and

reliable 3D perception capabilities for upper-level applications.

However, translating this intuition into a practical system

faces two main challenges.

Challenge 1: How to design a high-precision Wi-Fi and
vision multimodal depth estimation framework. Previous

methods combining Wi-Fi and vision are primarily designed

for classification tasks, such as human activity recognition.

However, depth estimation, being a regression task, demands

not only higher precision but also continuous and high-

resolution distance data. Unlike classification, which deals

with discrete labels, depth estimation requires handling con-

tinuous variables. Consequently, the limitations of traditional

data fusion strategies are more pronounced in this context.

Challenge 2: How to extract precise spatial information
from complex-valued Wi-Fi CSI signals. Wi-Fi CSI signals

have complex domain characteristics, including amplitude and

phase information. Existing real-domain processing methods

are insufficient for handling the high spatio-temporal coupling

features in the complex domain. Due to the multipath propaga-

tion effect, the blending of CSI signal information in time and

space significantly increases the difficulty of feature extraction.
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Consequently, traditional methods cannot fully utilize the

rich spatio-temporal information within complex-valued CSI

signals. Constructing a neural network that operates in the

complex domain to extract information from CSI signals for

guiding depth reconstruction has become a critical research

challenge.

To tackle these challenges, we develop a system called

WiViD, which utilizes a generative diffusion model for mul-

timodal depth estimation. Diffusion models, known for their

iterative refinement processes, excel in producing high-quality

and detailed predictions. Specifically, we design two network

structures in WiViD for processing different data modalities:

the Complex-Valued CSI Encoder (CCE) and the Residual Im-

age Encoder (RIE). The CCE is designed to encode complex-

valued Wi-Fi CSI, while the RIE processes RGB image

information. To effectively fuse these two data modalities,

we propose the Multimodal Conditional Diffusion (MMCD)

mechanism. The MMCD concatenates the features extracted

by the CCE and RIE, transforming them into the control

condition using linear transformations and activation functions.

In the U-net [16] Denoising Module, the control condition

guides the process of denoising, enabling accurate depth

estimation.

We implement WiViD and conduct extensive experiments

in real-world scenarios. We compare it with two advanced

monocular visual depth estimation methods: DORN [17]

and VA-DepthNet [18]. The experimental results show that

WiViD’s ARE is only 0.022, outperforming DORN’s 0.153

and VA-DepthNet’s 0.059, demonstrating the outstanding per-

formance of WiViD. Additionally, we conduct experiments

to confirm the effectiveness of WiViD’s multimodal fusion

mechanism.

Our contributions are summarized as follows:

• We propose WiViD, the first depth estimation system incor-

porating an innovative Wi-Fi and vision multimodal diffusion

model. WiViD achieves excellent experimental results, repre-

senting a promising step in the exploration of depth estimation

by fusing Wi-Fi and vision.

• Our proposed Complex-Valued CSI Encoder (CCE) of-

fers unique advantages in handling spatio-temporal complex-

valued signals and can be directly applied to other wireless

sensing applications (e.g., human gesture recognition, fall

detection) to enhance their feature extraction capabilities.

• Our proposed Multimodal Conditional Diffusion (MMCD)

mechanism is a pioneering approach to Wi-Fi-vision fusion

within a diffusion framework. The MMCD mechanism can

be extended to other sensing modalities, establishing a new

paradigm for multimodal fusion perception.

II. SYSTEM OVERVIEW

WiViD is a Wi-Fi and vision depth estimation system that

utilizes multimodal diffusion. As shown in Fig. 1, WiViD
extracts features from Wi-Fi CSI signals and RGB images,

encoding them as control conditions to guide the diffusion

model in generating accurate depth maps.

…

…

…

…

Fig. 1. System Overview of WiViD

Similar to DDPM [19], our diffusion model consists of two

stages: the forward diffusion stage and the reverse denoising

stage. During the forward diffusion stage, Gaussian noise

is incrementally added to the authentic depth map, gradu-

ally transforming it into a noise distribution. In the reverse

denoising stage, WiViD employs the U-net Noise Prediction

Module to predict the noise in the xt input depth map. WiViD
progressively removes the predicted noise at each step, thereby

reconstructing the xt−1 depth map until x0, the final noise-

free depth map. The reverse denoising stage is divided into T
steps. The training process involves both stages, whereas the

prediction process only requires the reverse denoising stage.

The architecture of WiViD consists of three key components:

the Complex-Valued CSI Encoder (CCE), the Residual Image

Encoder (RIE), and the U-net Noise Prediction Module. These

modules are unified under the Multimodal Conditional Diffu-

sion (MMCD).

When performing depth estimation tasks, the algorithm

samples random Gaussian noise and gradually transforms it

into a depth map. The CCE and RIE extract and encode

features from the input Wi-Fi CSI and RGB images into

high-dimensional vectors. These vectors undergo multimodal

fusion in the MMCD, forming a comprehensive representation

used as a control condition during the denoising stage. This

control condition, containing inherent spatial data from Wi-Fi

and vision inputs, is crucial for generating the depth map. In

each block of the U-net Noise Prediction Module, this control

condition is added to the predicted intermediate representa-

tion, guiding the denoising process to achieve accurate depth

estimation.

III. WiViD DESIGN

WiViD is designed for depth estimation and proposes a deep

learning strategy based on a diffusion model. It addresses

two major challenges: 1) extracting and encoding features

from RGB images and Wi-Fi CSI signals, particularly Wi-

Fi CSI; and 2) fusing the encoded information from these two

modalities to guide the denoising stage of the diffusion model

for depth estimation.
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Fig. 2. Design of Denoising with Conditional Control

To address these challenges, we introduce the RGB Image

Encoder (RIE) and the CSI Signal Encoder (CSE) into the

diffusion model. Additionally, we employ the Multimodal

Conditional Diffusion (MMCD) mechanism for multimodal

fusion.

To enhance prediction accuracy in the depth estimation,

WiViD employs the SiLU activation function.

A. Diffusion for Depth Estimation

Our diffusion model consists of two stages: the diffusion

stage and the denoising stage.

In the diffusion stage, the authentic depth map x0 is

gradually converted into pure noise xT through a series of

predefined noise scales over T steps. This transformation

is governed by the diffusion process q(xt|x0), producing a

noised depth map xt for t ∈ {1, ..., T}, defined as a random

process:

q(xt|x0) := N (
xt;

√
ᾱtx0, (1− ᾱt)I

)
, (1)

where ᾱt is the cumulative product of the noise scales at each

step, indicating the total noise level from step 1 to t. It is

calculated as ᾱt =
∏t

s=0 αs, where αs = 1 − βs, and βs

represents the noise variance schedule.

The denoising stage involves training a deep neural network

εθ to predict the noise in the noised depth map xt, using the

RGB image M and Wi-Fi CSI H as the control condition. A

proportion of this noise, determined by ᾱt, αt and βt, is then

removed to obtain xt−1. This process is iteratively continued

until the authentic depth map x0 is recovered. This procedure

is described by:

pθ(xt−1|xt) := N (
xt−1;μθ(xt, t,M ,H),σ2

t I
)
, (2)

μθ(xt, t,M ,H) =
1√
αt

(xt − βt√
1− ᾱt

εθ(xt, t,M ,H)),

(3)

where σ2
t represents the transition variance, and

μθ(xt, t,M ,H) represents the process of removing

predicted noise to obtain the denoised result at each step.
The training process of WiViD involves both a diffusion

stage and a denoising stage, as illustrated in Algorithm 1.

Noise is added to the authentic depth map x0, with the noise

level determined by t, randomly selected from {1, ..., T}.

Concurrently, the image M and CSI H are input as the

control condition. Subsequently, the model εθ predicts the

added noise, recovering the authentic depth map x0 from

the noise-corrupted data. This training process optimizes the

parameters of the model εθ to minimize the difference between

the predicted noise and the actual noise added to x0.
The sampling process requires only the denoising stage, as

illustrated in Algorithm 2. Gaussian noise xT is randomly

generated and input along with the corresponding image

M and CSI H . Using the trained model εθ, the noise is

iteratively removed, starting from step T and continuing until

the authentic depth map x0 is recovered.
For depth images of WiViD, depth can be represented as

d ∈ R
1×M×N , where M and N denote the height and

width of the depth map. Unlike RGB images with three
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channels, depth maps have only one channel. The depth map

is normalized to the range [−1, 1] to match the Gaussian noise

mean and variance in diffusion model. So that the diffusion

and denoising stages are applied to these normalized depth

maps.

Algorithm 1 WiViD Training Algorithm

Input: Dataset following x ∼ q(x), image M and CSI H
Output: Noise prediction model εθ

1: repeat
2: x0 ∼ q(x0), M and H from dataset

3: t ∼ Uniform({1, . . . , T})
4: ε ∼ N (0, I)
5: Take gradient descent step on

6: ∇θ‖ε− εθ(
√
ᾱtx0 +

√
1− ᾱtε, t,M ,H)‖2

7: until converged

Algorithm 2 WiViD Sampling Algorithm

Input: Noise prediction model εθ, image M and CSI H
Output: Depth map x0

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: xt−1 = 1√

αt

(
xt − 1−αt√

1−ᾱt
εθ(xt, t,M ,H)

)
4: end for
5: return x0

B. Residual Image Encoder (RIE)

To fully leverage the information in RGB images, we design

the RIE module using ResNet-18 [20] for feature extraction

and encoding. By removing its classification layer, we obtain

an intermediate representation rich in semantic content, essen-

tial for encoding. This representation encapsulates high-level

image features. Using RIE for feature extraction, we encode

the image M into a vector for depth estimation, XM, as

described below:

XM = ResNet(M). (4)

C. Complex-Valued CSI Encoder (CCE)

To effectively encode Wi-Fi CSI data and extract its spatio-

temporal features, we design a Multi-Head Transformer En-

coder that supports complex-valued calculation. This encoder

not only preserves the authentic information of the CSI signal

but also captures the interactions and dependencies between

signals through the Attention mechanism.

Complex-Valued Multi-Head Attention. In this Trans-

former Encoder, we extend Attention to the complex domain.

For given X ∈ C
L×din , firstly it will perform linear projection:

Q = XWQ, K = XWK , V = XW V , (5)

then we get Q ∈ C
L×dQ , K ∈ C

L×dK and V ∈ C
L×dV ,

in which the multiplication follows the principles of complex

multiplication, and WQ ∈ C
din×dQ , WK ∈ C

din×dK and

W V ∈ C
din×dv are projection parameters. Softmax and

Attention mechanism are also extended in complex domain,

and can be defined as follows:

softmaxcomplex(z) =
e|z|ej∠(z)∑n

i=1 e
|zi| , (6)

Attention(Q,K,V ) = softmaxcomplex

(
QKT

√
dK

)
V , (7)

where j is the imaginary unit. Furthermore, we employ Multi-

Head Attention with h heads, defined as follows:

MultiHead(Q,K,V ) = (a1, a2, . . . , ah)
TWO, (8)

where WO ∈ C
hdV ×dO is the final projection parameter, and

ai = Attention(XW i
Q,XW i

K ,XW i
V ).

Complex feed-forward module. The complex feed-forward

module contains linear transformations and activation func-

tions, which support calculations in the complex domain, and

can be defined as follows:

wx+ b =

[�(wx+ b)
�(wx+ b)

]

=

[
wr −wi

wi wr

] [
xr

xi

]
+

[
br
bi

]
, (9)

σcomplex(x) = σ(xr) + jσ(xi), (10)

where σ(·) represents the activation function.

The Complex Transformer Encoder block consists of Com-

plex Multi-Head Attention and Complex Feed-Forward mod-

ules. The Complex Transformer Encoder is structured with 32

of these blocks.

Complex-to-Real Transformation Layer (C2R). Subse-

quently, we design a Complex-to-Real Transformation Layer

following the Transformer Encoder. This layer converts com-

plex features to real features. C2R is defined as follows:

C2R(X) = σ(Linear1(�(X)) + Linear2(�(X))). (11)

Following the Transformer Encoder and C2R, we apply an

average pooling layer to the CSI data for temporal averaging.

This step compresses the data and transforms dynamic CSI

features into a static representation, aligning them with single-

frame image features. Subsequently, an MLP further extracts

and compresses the feature vector from the average pooling,

resulting in a compact feature representation.

In summary, the CCE can be described as follows:

XH = MLP(AvgPool(C2R(CTransEnc(H)))), (12)

where CTransEnc represents the Complex Transformer En-

coder, H is the Wi-Fi CSI matrix, and XH is the processed

CSI embedding.
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D. Multimodal Conditional Diffusion (MMCD)

To fuse RGB images and Wi-Fi CSI data, we integrate the

Multimodal Conditional Diffusion (MMCD) mechanism into

the denoising stage of the diffusion model. RGB images are

encoded by the RIE to produce image embeddings, while CSI

data is encoded by the CCE to produce CSI embeddings. Both

encoders are trained simultaneously with the U-net.

Within U-net blocks, RGB and CSI embeddings are con-

catenated to form a unified feature representation, then refined

through activation functions and a linear layer to produce a

block-specific fusion condition embedding XF. Each block of

the U-net utilizes its own XF to improve feature adaptability

and expressiveness. XF can be represented as follows:

XF = Linear(σ(RIE(M)⊕ CCE(H))), (13)

where M and H are matrices of RGB image and Wi-Fi CSI.

XF is then added to the intermediate feature representation

within the U-net blocks. For each channel of the intermediate

representation, a broadcasting mechanism is used to add the

corresponding values from XF, thereby guiding noise predic-

tion for depth estimation. The conditional control process can

be described as follows:

N ′ = N +XF, (14)

where N and N ′ are intermediate representation before and

after conditional control.

IV. EVALUATION

A. Methodology

Implementation. We utilize MATLAB for Wi-Fi CSI data

pre-processing, converting the raw CSI into tensors suitable

for model training. WiViD is implemented in PyTorch and

trained on an NVIDIA GeForce RTX 3090. During training,

the number of steps T is set to 50. A cosine annealing strategy

dynamically adjusts the learning rate from 1e-4 to 1e-7. The

model completes 100 epochs of training with a batch size of

16.

Dataset and Data Preprocessing. For our experiments, we

use a subset of the XRF55 [21] dataset, extracting RGB images

and Wi-Fi CSI from a meeting room, with depth maps as the

ground truth. The spatial layout is shown in Fig. 3. The dataset

comprises 10,000 RGB images created by frame-sampling

400 randomly selected videos. To streamline calculations, the

original 1280 × 720 RGB images and depth maps are resized

to 160 × 90 pixels. Wi-Fi CSI data for each video frame

is collected and concatenated from three Wi-Fi RXs to form

a unified dataset. The data is then shuffled and divided into

training and testing sets in a 9:1 ratio for WiViD training and

evaluation.

Evaluation Metrics. Various evaluation metrics can mea-

sure the effectiveness of depth estimation; we select two

commonly used metrics: error values and threshold accuracy.

Lower error values between the predicted depth and the ground

truth indicate better depth estimation, while higher threshold

accuracy signifies improved performance.

Absolute Relative Error (ARE) and Relative Squared Error

(SRE) describe the general distance between the predicted

depth and the ground truth.

• Absolute Relative Error (ARE):

ARE =
1

N

N∑
i=1

|dtrue,i − dpred,i|
dtrue,i

. (15)

• Squared Relative Error (SRE):

SRE =
1

N

N∑
i=1

|dtrue,i − dpred,i|2
dtrue,i

. (16)

Root Mean Square Error (RMSE) and Root Mean Square

Logarithmic Error (RMSELog) are especially sensitive to local

inaccuracies of depth estimation.

• Root Mean Square Error (RMSE):

RMSE =

√√√√ 1

N

N∑
i=1

|dtrue,i − dpred,i|2. (17)

• Root Mean Square Logarithmic Error (RMSELog):

RMSELog =

√√√√ 1

N

N∑
i=1

|log dtrue,i − log dpred,i|2. (18)

Threshold accuracy measures the similarity between the

predicted depth and the ground truth, providing a quantitative

evaluation of the model’s accuracy within a specific depth

range. It includes three primary metrics: δ1, δ2 and δ3,

corresponding to different depth thresholds.

• Threshold accuracy (δk) is defined as the percentage of

dpred,i where max
(

dpred,i

dtrue,i
,
dtrue,i

dpred,i

)
< 1.25k, for k = 1, 2, 3.

It is important to note that in the ground truth depth

map, there are pixels with undefined depth. When calculating

metrics, we exclude these pixels.

B. Overall Performance

To assess the performance of WiViD, we select two promi-

nent monocular depth estimation algorithms as comparison

benchmarks: DORN [17] and VA-DepthNet [18]. DORN

transforms depth prediction into an ordinal classification prob-

lem, employing deep learning to capture relative depth order
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RGB Ground Truth WiViD VA-DepthNetDORN
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Fig. 4. Depth Estimation Samples of WiViD and Benchmarks
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Fig. 5. Overall Performance Comparison with Benchmarks
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Fig. 6. Performance Comparison between Multimodal and Single-modal

at the pixel level for precise depth mapping. VA-DepthNet

incorporates first-order variational constraints and encoder-

decoder network architecture. To ensure a fair comparison, we

fine-tune the open-source implementations of these algorithms

on our dataset.

As depicted in Fig. 5(a) and Fig. 5(b), WiViD outper-

forms existing benchmarks, particularly on the ARE metric,

achieving a score of 0.022 compared to DORN’s 0.153 and

VA-DepthNet’s 0.059. On the δ1 metric, which represents

the highest demand for depth estimation accuracy, WiViD
reaches 0.977, significantly higher than DORN’s 0.786 and

VA-DepthNet’s 0.943.

As depicted in Fig. 4, the advantages of WiViD are especially

notable. While DORN accurately identifies human contours

and their relative depth, it fails to provide precise depth

estimation due to inaccuracies in the depth scale, resulting in

a higher RMSE than WiViD. VA-DepthNet grasps the overall

scale of depth estimation but struggles to clearly segment

human actions, leading to a loss of accuracy. In contrast,

WiViD not only accurately estimates the static depth in the

scene but also precisely captures changes in depth caused

by human actions, thereby achieving more accurate depth

estimation.

C. Micro Benchmarks

1) Effectiveness of Multimodal Fusion
To evaluate the effectiveness of multimodal fusion in WiViD,

we conduct an experiment comparing multimodal and single-

modal methods. Specifically, we examine the performance

of using RGB images alone, Wi-Fi CSI data alone, and the

combination of both.

We remove one of the modalities to obtain depth estimation

results for “Vision Only” and “Wi-Fi Only”. As shown in

Fig. 6(a) and Fig. 6(b), the multimodal fusion method in

WiViD consistently outperforms both single-modality methods

across all metrics. Specifically, the RMSE for the multimodal

method, “Vision Only” and “Wi-Fi Only” are 0.381, 0.407

and 0.768, while the δ1 values are 0.977, 0.973 and 0.918.

These results indicate that the multimodal method optimizes

depth estimation performance, demonstrating the effectiveness

of combining vision and Wi-Fi for depth estimation.

To explore the role of fusing Wi-Fi and vision for depth

estimation, we selected two sets of samples for comparative

analysis, as illustrated in Fig. 7. It is evident that the “Vision
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RGB Ground Truth WiViD Wi-Fi OnlyVision Only

Fig. 7. Depth Estimation Samples of Multimodal and Single-modal

Only” method is less accurate in many details of depth esti-

mation compared to the multimodal fusion method. Moreover,

the “Wi-Fi Only” method struggles to capture depth changes

caused by human movements.

Monocular visual depth estimation relies on extracting vi-

sual cues from a single image to infer depth but lacks direct

physical depth information, limiting its accuracy. In contrast,

Wi-Fi CSI, which is closely related to the geometric structure

of space, provides direct physical depth information. How-

ever, when used alone, Wi-Fi CSI lacks pixel-level resolution

and texture details, affecting its fine-scale depth estimation

capability. Our observations indicate that fusing Wi-Fi CSI

and RGB images provides more detailed and complementary

information for depth estimation, thereby improving accuracy.

When RGB images alone fail to provide accurate depth

estimation, the integration of Wi-Fi CSI significantly enhances

the system’s robustness.

2) Impact of Diffusion Steps

TABLE I
PERFORMANCE OF WiViD IN THE IMPACT OF DIFFUSION STEPS

Metrics / T 35 40 45 50

ARE ↓ 0.027 0.026 0.022 0.022

SRE ↓ 0.058 0.050 0.046 0.045

RMSE ↓ 0.404 0.395 0.380 0.381

RMSELog ↓ 0.093 0.091 0.087 0.087

δ1 ↑ 0.974 0.975 0.977 0.977

δ2 ↑ 0.982 0.983 0.985 0.985

δ3 ↑ 0.993 0.994 0.994 0.995

WiViD is a depth estimation method based on a diffusion

model. During the denoising stage, the diffusion steps T affect

both the number of denoising iterations and the amount of

noise removed in each iteration. A smaller T requires more

noise to be removed in a single step, and vice versa.

We conduct experiments with different T values (35, 40,

45, 50), as shown in Table I. As T increases from 35 to

50, the depth estimation performance of WiViD improves, but

this improvement slows beyond T = 45. Increasing T within

a certain range enhances depth estimation performance, but

further increases beyond this threshold do not yield significant

improvements.

D. Robustness Experiments

We simulate scenes with underexposure and overexposure at

25%, 50%, and 75%, as outlined in Table II. We then compare

TABLE II
UNDEREXPOSURE OR OVEREXPOSURE FOR RGB IMAGE

Exposure 0% 25% 50% 75%

Underexposure

Overexposure

the depth estimation capabilities of the multimodal model

against the “Vision Only” model across different exposure

levels. Our findings show that the performance of both models

degrades as texture information decreases. However, the multi-

modal model, which integrates vision and Wi-Fi, outperforms

the “Vision Only” model on all evaluation metrics by aug-

menting depth information when visual texture is lacking. This

superiority is most pronounced in the δ1 and ARE metrics, as

illustrated in Fig. 8 and Fig. 9. These results suggest that the

enhanced robustness of the multimodal model in the presence

of reduced bright or dark texture is due to the integration of

Wi-Fi CSI, which provides additional depth information and

reinforces the model’s performance in challenging exposure

conditions.

Fig. 8. δ1 and ARE of Underexposure

Fig. 9. δ1 and ARE of Overexposure

V. RELATED WORK

We briefly review the related works in the following.

Diffusion Models. Diffusion models have become pivotal

in deep learning and AI. Innovations such as GLIDE [22],

DALL-E 2 [23], and Imagen [24] have significantly advanced

text-to-image creation by enhancing image diversity and util-

ity. Latent Diffusion Models (LDM) [25] optimize this process

by operating in a low-dimensional latent space, reducing com-

putational demands while maintaining high-quality outputs.

Additionally, in the field of radio frequency, RF-Diffusion [26]

is a wireless signal generation scheme utilizing a diffusion

model. These advancements have expanded the capabilities
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and applications of diffusion models, making them integral to

AI research and development.

Depth Estimation. Depth estimation is essential for various

technological applications, driving the development of diverse

methods to address this challenge. Convolutional Neural Net-

works (CNNs) are widely employed, with approaches such as

those by Eigen et al. [27] utilizing multi-scale CNNs to achieve

precise depth predictions. MonoDepth [28] leverages a self-

supervised learning framework to estimate depth from single

images, thereby eliminating the need for ground truth data

and significantly enhancing efficiency. Recent advancements

include monocular depth estimation using Transformer archi-

tectures, as demonstrated by MonoViT [29], which captures

long-range dependencies to improve depth prediction. Collec-

tively, these methods advance depth estimation and contribute

to progress in autonomous driving, augmented reality, and

robotics.

VI. CONCLUSION

This paper proposes WiViD, the first Wi-Fi and vision

multimodal fusion depth estimation method. It integrates Wi-

Fi and vision data through a diffusion model. The Complex-

Valued CSI Encoder (CCE), Residual Image Encoder (RIE),

and Multimodal Conditional Diffusion (MMCD) mechanism

ensure effective fusion of Wi-Fi CSI and RGB images. Exper-

imental results demonstrate that WiViD outperforms existing

monocular visual depth estimation methods in real-world

scenarios.
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